Causal Inference for Influence Propagation-Identifiability of the Independent Cascade Model

Shi Feng ${ }^{1}$ Wei Chen ${ }^{2}$
${ }^{1}$ Institute for Interdisciplinary Information Sciences
Tsinghua University
${ }^{2}$ Microsoft Research

CSoNet, November 2021

Overview

(1) Backgrounds and Motivations

(2) Technical Results

(3) Conclusions and Future works

How to Model Diffusion in a Social Network?

- Traditionally, we use the Independent Cascade model (IC model).
- If it is a direct acyclic graph, it is exactly a Bayesian causal graph!
- After the propagation process, denote the activating status of node V_{i} by v_{i}.
- Suppose, $\operatorname{Pa}\left(V_{i}\right)=\left\{V_{i_{1}}, V_{i_{2}}, \cdots, V_{i_{k}}\right\}$, we have $P\left(V_{i}=1 \mid V_{i_{1}}=v_{i_{1}}, \cdots, V_{i_{k}}=v_{i_{k}}\right)=1-\prod_{j=1}^{k}\left(1-p v_{i_{j}}, v_{i} \cdot v_{i_{j}}\right)$.

What is do effect (for modeling intervention)?

- Consider an IC model with three nodes, Salesman (Carol), Alice and Bob.
- Carol sold both Alice and Bob on the new operating system, Windows 11.
- If Alice bought it, she would recommend Bob to buy it.
- Node activation means purchase, non-activation means no purchase, and the activation probability is shown in the figure.

- $P(B o b=1)=1-0.8(1-0.2 \times 0.3)(1-0.5)=0.53$.
- $P(B o b=1 \mid d o($ Alice $=1))=1-0.8(1-0.3)(1-0.5)=0.65$.

What is do effect (for modeling intervention)?

- $P(B o b=1)=1-0.8(1-0.2 \times 0.3)(1-0.5)=0.53$.
- $P(B o b=1 \mid$ do $($ Alice $=1))=1-0.8(1-0.3)(1-0.5)=0.65$.

Carol (self-activated with 0.8 probability)

Carol (self-activated with 0.8 probability)

- $d o($ Alice $=1)$ is an intervention that forcing Alice to use Windows 11 , i.e. giving a free sample to her, which is different from $P($ Bob $=1 \mid$ Alice $=1)$.
- Actually, $P($ Bob $=1 \mid$ Alice $=1)=P($ Bob $=1$, Alice $=1) / P($ Alice $=$ $1)=0.16(1-0.5 \times 0.3) / 0.16=0.85$.

Seed Node Selection \Longleftrightarrow Intervention

- Usually, we will choose a seed node set (Bob, Frank in our example).
- In-edge of Bob and Frank will be useless, Bob and Frank will be activated no matter how the propagation performs.
- Equivalent to the definition of $d o(B o b=1$, Frank $=1)$.

Bayesian Causal Graph

- We can use Bayesian causal graph to model a social network!
- The propagating rule is equivalent to the Bayesian propagating rule if we merely observe the propagating results.
- $P\left(V_{1}=v_{1}, \cdots, V_{n}=v_{n}\right)=\prod_{i=1}^{n} P\left(V_{i}=v_{i} \mid P a\left(V_{i}\right)=p a\left(v_{i}\right)\right)$.
- To be more specific, what we have is a form like this:

Probability Carol		
Alice, Bob	Activated	Not Activated
A, A	0.1	0.2
A, N	0.1	0.05
N, A	0.3	0.15
N, N	0.05	0.05

How About IC Model that is not a DAG?

- The state of V_{i} in round t is $V_{i, t}$ and that $V_{i, t}$ has three values, 0,1 and 2 , for three states.
- State 0 means that the node is not activated.
- State 1 means that the node was activated at the last time point.
- State 2 means that the node is activated and has already tried to activate its child nodes.

Figure: An example of transformation from IC model to Bayesian causal graph.

Identifiability Problem In Causal Graphs

- Now we have shown that how to transform an IC model to a causal graph.
- Identifiability generally says that if we can get the propagation result for infinitely times, we can completely restore the parameters in this graph.
- In Bayesian causal graph, identifiability means that if $P\left(V_{1}=v_{1}, \cdots, V_{n}=v_{n}\right)$'s are known, we can solve $P(\mathbf{Y} \mid \operatorname{do}(\mathbf{X}=\mathbf{x}))$ for node sets $\mathbf{X}, \mathbf{Y} \subset \mathbf{V}$.
- In IC model, parameter identifiability means that if $P\left(V_{1}=v_{1}, \cdots, V_{n}=v_{n}\right)$'s are known (2n terms), we can solve all the activating probabilities $p_{V_{i}, V_{j}}$ for $\left(V_{i}, V_{j}\right) \in \mathbf{E}$.
- With all the parameters, do effects can be naturally computed, so parameter identifiability is strictly stronger than identifiability!

With Hidden Variables

- If all the nodes are observable, all the do effects will be identifiable.
- If some variables are not observable? We still consider the Windows 11 selling example.
- We do not know Carol so we cannot know whether Carol =1. Also, "Carol" can be a factor, such as common interests that cannot be revealed.
- So Carol is a hidden variable, the outcoming edges are denoted using dashed vectors.

Carol (self-activated with 0.8 probability)

- If we can only observe $P($ Alice, $B o b)$, can be get $P($ Bob \mid do(Alice $)$)?

Identifiability Problem In Causal Graphs

- Fully solved for Semi-Markovian graphs!
- Pearl's do calculus algorithm is complete for Semi-Markovian Models ${ }^{1}$.
- That is to say, after iterations of three rules in do calculus, if we can identify all the do effects, the causal graph is identifiable.

Figure: an example of semi-Markovian model, each hidden variable has at most two children and they should be observable

[^0]
Identifiability Problem In IC Model

- Suppose $G=(\mathbf{U}, \mathbf{V}, \mathbf{E})$ where \mathbf{U}, \mathbf{V} are the sets of hidden and observable variables, respectively.
- If we have $P\left(V_{1}, V_{2}, \cdots, V_{n}\right)$, can we solve all the parameters under any instance (taking any values for the parameters) of this graph G ?
- For example, there are three hidden advertisements in our previous IC model.

Overview

(1) Backgrounds and Motivations

(2) Technical Results

(3) Conclusions and Future works

Three Studied Typical IC Models

Figure: Markovian IC Model.

Figure: Markovian IC Model with a Global Effect.

Figure: Semi-Markovian IC Model.

Markovian IC Models

Identifiability of the Markovian IC Model

For an arbitrary Markovian IC model $G=(U, V, E)$ with parameters $\boldsymbol{q}=\left(q_{i}\right)_{i \in[n]}$ and $\boldsymbol{p}=\left(p_{i, j}\right)_{\left(V_{i}, V_{j}\right) \in E}$, all the q_{i} parameters are efficiently identifiable, and for every $i \in[n]$, if $q_{i} \neq 1$, then all $p_{j, i}$ parameters for $\left(V_{j}, V_{i}\right) \in E$ are efficiently identifiable.

So almost all the Markovian IC models are identifiable!

IC Model with a Global Effect

Identifiability of the IC Model with a Global Hidden Variable

For an arbitrary IC model with a global hidden variable $G=(U, V, E)$ with parameters $\mathbf{q}=\left(q_{i}\right)_{i \in[n]}, r$ and $\mathbf{p}=\left(p_{i, j}\right)_{\left(v_{i}, V_{j}\right) \in E}$ such that $q_{i} \neq 1, p_{i, j} \neq 1$ and $r \neq 1$ for $\forall i, j \in[n]$, all the parameters in \mathbf{p}, r and \mathbf{q} are identifiable.

So almost all the IC models with a global effect are identifiable!

Markovian IC Model with a Global Effect

Identifiability of Markovian IC Model with a Global Hidden Variable

For an arbitrary Markovian IC Model with a Global Hidden Variable $G=(U, V, E)$ with parameters $r_{0}, \mathbf{q}_{0}=\left(q_{0, i}\right)_{i \in[n]}, \mathbf{q}=\left(q_{i}\right)_{i \in[n]}$ and $\mathbf{p}=\left(p_{i, j}\right)_{\left(v_{i}, v_{j}\right) \in E}$, we suppose that all the parameters are not 1 . If $\exists i, j, k \in[n], i<j<k$ such that each pair in V_{i}, V_{j}, V_{k} are disconnected and $q_{0, i}, q_{0, j}, q_{0, k} \neq 0$, then the parameters $q_{0, t}, q_{t}$ and $p_{t, l} l>t>k$ are identifiable. Moreover, if V_{i}, V_{j}, V_{k} can be adjacently continuous in some topological order, i.e. $j=i+1, k=i+2$ without loss of generality, all the parameters are identifiable.

Comment: unconnected V_{i}, V_{j}, V_{k} are the key! If the tuple can be found, most parameters can be solved out; if the tuple contains continuous node in some topological order, all parameters can be solved out.

Markovian IC Model with a Global Effect

- If V_{i}, V_{j}, V_{k} can be adjacently continuous in some topological order, i.e. $j=i+1, k=i+2$ without loss of generality, all the parameters are identifiable. For example, V_{5}, V_{6}, V_{8} in the figure. (idea: these three nodes can help us to speculate the state of global effect U_{0}.)

Unidentifiability of the Semi-Markovian IC Model

Unidentifiability of the Semi-Markovian IC Model

Suppose in a general graph G, we can find the following structure. There are three observable nodes V_{1}, V_{2}, V_{3} such that $\left(V_{1}, V_{2}\right) \in E,\left(V_{2}, V_{3}\right) \in E$ and unobservable U_{1}, U_{2} with $\left(U_{1}, V_{1}\right),\left(U_{1}, V_{2}\right),\left(U_{2}, V_{2}\right),\left(U_{2}, V_{3}\right) \in E$. Suppose each of U_{1}, U_{2} only has two edges associated to it, the three nodes V_{1}, V_{2}, V_{3} can be written adjacently in a topological order of nodes in $U \cup V$. Then we can deduce that the graph G is not parameter identifiable.

Figure: An example of such structure.

Unidentifiability of the Semi-Markovian IC Model

- The main idea is that construct two set of different parameters but they induce two same distribution on observable nodes.
- $r_{1}=\frac{10 r_{2}-7}{12 r_{2}-10}, q_{1,1}=\frac{1}{4 r_{1}}, q_{1,2}=\frac{6 r_{2}-5}{8 r_{2}-8}, q_{2,1}=\frac{1}{3-2 r_{2}}, q_{2,2}=\frac{1}{4 r_{2}}$ and other variables are fixed.
- This surprising construction is found by the method of undetermined coefficients.

So a large proportion of the semi-Markovian IC model is not fully identifiable!

Identifiability of the Semi-Markovian IC Model

- As we mentioned, the identifiability of semi-Markovian graphs is fully investigated in the context of causal graphs.
- What about the identifiability of the semi-Markovian IC model? Let us consider the simplest case - the chain.

- However, according to our previous theorem, this contains $\left[\frac{n}{2}\right]$ of its required structure.
- So we prove that with n specific parameters known in advance, we can solve out all the other parameters.

Identifiability of the Semi-Markovian IC Model

Identifiability of Semi-Markovian IC Chain

Suppose that we have a semi-Markovian IC chain model with the graph $G=(U, V, E)$ and the IC parameters $\boldsymbol{p}=\left(p_{i}\right)_{i \in[n-1]}, \boldsymbol{q}_{1}=\left(q_{i, 1}\right)_{i \in[n-1]}$, $\boldsymbol{q}_{2}=\left(q_{i, 2}\right)_{i \in[n-1]}$ and $\boldsymbol{r}=\left(r_{i}\right)_{i \in[n-1]}$, and suppose that all parameters are in the range $(0,1)$. If the values of parameter p_{1} is known, \boldsymbol{q}_{2} or \boldsymbol{r} is known, then the remaining parameters are efficiently identifiable.

Orange parameters are known in advance, then other parameters are identifiable.

Identifiability of the Semi-Markovian IC Model

- Proof idea: using mathematical induction, assume $p_{1}, p_{2}, \cdots, p_{t-2}$, $r_{1}, r_{2}, \cdots, r_{t-2}, q_{1,1}, q_{2,1}, \cdots, q_{t-2,1}$ and $q_{1,2}, q_{2,2}, \cdots, q_{t-2,2}, r_{t-1} q_{t-1,1}$ are already known.
- We prove that $q_{t-1,1}, r_{t-1}, p_{t-1}, q_{t-1,2}$ and $r_{t} q_{t, 1}$ can be computed using distributions of observed variables.

- Solve the group of equations deduced by the parameter expression of $P\left(V_{1}=0, \cdots, V_{t-3}=0, V_{t-2}=1, V_{t-1}=1, V_{t}=0\right)$, $P\left(V_{1}=0, \cdots, V_{t-3}=0, V_{t-2}=0, V_{t-1}=1, V_{t}=0\right)$, $P\left(V_{1}=0, \cdots, V_{t-3}=0, V_{t-1}=0, V_{t}=0\right)$. We have proved that other equations deduced by the distribution of first t nodes are all equivalent to these three.
- Actually, that is enough (but lots of technical issues not covered here).

Overview

(1) Backgrounds and Motivations

(2) Technical Results
(3) Conclusions and Future works

Conclusions

Our Contributions:

- Proposed a method to convert the IC model into a Bayesian causal graph.
- Studied the problem of identifiability of IC models in detail, and give rich conditions for several types of common models to be identifiable as well as unidentifiable.
- Incorporation of observed confounding factors and causal inference techniques.

Future works

- Seed selection and influence maximization correspond to the intervention (or do effect) in causal inference.
- How to compute such intervention effect under the network with unobserved confounders and how to do influence maximization.
- Identifiability of the intervention effect, or whether given some intervention effect one can identify more of such effects.
- Identifiability in the general cyclic IC models .

Q\&A

Thank you for your attention!

[^0]: ${ }^{1}$ Huang, Y., \& Valtorta, M. (2012). Pearl's calculus of intervention is complete. arXiv preprint arXiv:1206.6831.

