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How to Model Diffusion in a Social Network?

e Traditionally, we use the Independent Cascade model (IC model).
e If it is a direct acyclic graph, it is exactly a Bayesian causal graph!

o After the propagation process, denote the activating status of node V;

by v;.
@ Suppose, Pa(V;) = {\/,1, \/,2,--- , Vi.}, we have
P( i= 1"/1'1 = Vi, - = V’k) 1- H ( p\/:'j7vi ’ Vij)'

Alice 0.9
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What is do effect (for modeling intervention)?

o Consider an IC model with three nodes, Salesman (Carol), Alice and
Bob.

@ Carol sold both Alice and Bob on the new operating system, Windows
11.

o If Alice bought it, she would recommend Bob to buy it.

@ Node activation means purchase, non-activation means no purchase,
and the activation probability is shown in the figure.

Carol (self-activated with 0.8 probability) Carol (self-activated with 0.8 probability)

do(Alice = 1) ;
F02

Alice=1 0.3 Bob

o P(Bob=1)=1-0.8(1-0.2x0.3)(1 —0.5) = 0.53.
o P(Bob = 1|do(Alice=1)) =1 — 0.8(1 — 0.3)(1 — 0.5) = 0.65.
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What is do effect (for modeling intervention)?

o P(Bob=1)=1-0.8(1—0.2x 0.3)(1 —0.5) = 0.53.
e P(Bob = 1|do(Alice=1)) =1—0.8(1 —0.3)(1 — 0.5) = 0.65.

Carol (self-activated with 0.8 probability) Carol (self-activated with 0.8 probability)

do(Alice = 1)

@ do(Alice = 1) is an intervention that forcing Alice to use Windows 11,
i.e. giving a free sample to her, which is different from
P(Bob = 1|Alice = 1).

e Actually, P(Bob = 1|Alice =1) = P(Bob = 1, Alice = 1) / P(Alice =
1) =0.16(1 — 0.5 x 0.3)/0.16 = 0.85.
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Seed Node Selection <> Intervention

@ Usually, we will choose a seed node set (Bob, Frank in our example).

@ In-edge of Bob and Frank will be useless, Bob and Frank will be
activated no matter how the propagation performs.

e Equivalent to the definition of do(Bob = 1, Frank = 1).

Alice 0.9 -y
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Bob
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Bayesian Causal Graph

@ We can use Bayesian causal graph to model a social network!

@ The propagating rule is equivalent to the Bayesian propagating rule if
we merely observe the propagating results.

o P(\Vi=vi,-,Vp=v,) =T, P(Vi = vi|Pa(V;) = pa(vi)).
@ To be more specific, what we have is a form like this:

Probability \_Carol
Activated Not Activated
Alice, Bob
A A 0.1 0.2
A N 0.1 0.05
N, A 0.3 0.15
N, N 0.05 0.05
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How About IC Model that is not a DAG?

@ The state of V;in round tis V;; and that V;; has three values, 0, 1
and 2, for three states.

@ State 0 means that the node is not activated.
@ State 1 means that the node was activated at the last time point.

@ State 2 means that the node is activated and has already tried to
activate its child nodes.

Figure: An example of transformation from IC model to Bayesian causal graph.
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|dentifiability Problem In Causal Graphs

@ Now we have shown that how to transform an IC model to a causal
graph.

o ldentifiability generally says that if we can get the propagation result
for infinitely times, we can completely restore the parameters in this
graph.

o In Bayesian causal graph, identifiability means that if
P(Vi = vi,---, V, =v,)'s are known, we can solve P(Y|do(X = x))
for node sets X, Y C V.

@ In IC model, parameter identifiability means that if
P(Vi =vi, -+, V, =v,)'s are known (2" terms), we can solve all the
activating probabilities py, v, for (V;, V;) € E.

o With all the parameters, do effects can be naturally computed, so
parameter identifiability is strictly stronger than identifiability!
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With Hidden Variables

o If all the nodes are observable, all the do effects will be identifiable.

@ If some variables are not observable? We still consider the Windows
11 selling example.

@ We do not know Carol so we cannot know whether Caro/ = 1. Also,
"Carol” can be a factor, such as common interests that cannot be
revealed.

@ So Carol is a hidden variable, the outcoming edges are denoted using

dashed vectors.
Carol (self-activated with 0.8 probability)

e If we can only observe P(Alice, Bob), can be get P(Bob|do(Alice))?
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|dentifiability Problem In Causal Graphs

@ Fully solved for Semi-Markovian graphs!
@ Pearl's do calculus algorithm is complete for Semi-Markovian Models!.

@ That is to say, after iterations of three rules in do calculus, if we can
identify all the do effects, the causal graph is identifiable.

Common Interest 1 Bob

Figure: an example of semi-Markovian model, each hidden variable has at
most two children and they should be observable

'Huang, Y., & Valtorta, M. (2012). Pearl’s calculus of intervention is complete.

arXiv preprint arXiv:1206.6831.
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|dentifiability Problem In IC Model

@ Suppose G = (U, V,E) where U,V are the sets of hidden and
observable variables, respectively.

o If we have P(Vy, Vo, --- V), can we solve all the parameters under
any instance (taking any values for the parameters) of this graph G?

@ For example, there are three hidden advertisements in our previous IC
model.

Eve

Isabelle
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Three Studied Typical IC Models

Figure: Markovian IC Model. ~ Figure: Markovian IC Model
with a Global Effect.

Ui(ry) Us(r2) Us(rs3) Un_o(rn—2)  Up1(ra-1)
A A A a
/ \{h.z ,/ \\fIz 2 / \\(I.'z.z q,l,g_vl \\ Vi \\1)1771 2
",411.1 O N \ Y qu—z,z\A,, n-11 '\,
i ooy By By Vi PV P

Figure: Semi-Markovian IC Model.
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Markovian IC Models

Identifiability of the Markovian IC Model

For an arbitrary Markovian IC model G = (U, V, E) with parameters
9= (qi)ic[n and p = (pij)(v,v)ck. all the q; parameters are efficiently
identifiable, and for every i € [n], if g; # 1, then all p;; parameters for
(Vj, Vi) € E are efficiently identifiable.

So almost all the Markovian IC models are identifiable!
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IC Model with a Global Effect

Identifiability of the IC Model with a Global Hidden Variable

For an arbitrary IC model with a global hidden variable G = (U, V, E) with
parameters q = (qi)ic[n), r and p = (pi;)(v,v)ek such that g; # 1, p;; # 1 and
r# 1 for Vi, j € [n], all the parameters in p, r and q are identifiable.

Un(ro)
2

’

Lm
s
qys Tt

So almost all the IC models with a global effect are identifiable!
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Markovian IC Model with a Global Effect

Identifiability of Markovian IC Model with a Global Hidden Variable

For an arbitrary Markovian IC Model with a Global Hidden Variable G = (U, V, E)
with parameters ro, do = (qo,i)ic[s], 4 = (9i)ic[n) and P = (Pij)(v,,v)ecE, We
suppose that all the parameters are not 1. If 3i,j, k € [n],i < j < k such that each
pair in V;, V;, V| are disconnected and qoj, go j, o« 7 0, then the parameters
Go,t, Gr and pyy, | > t > k are identifiable. Moreover, if V;, V;, Vi can be adjacently
continuous in some topological order, i.e. j= i+ 1, k= i+ 2 without loss of
generality, all the parameters are identifiable.

v

Comment: unconnected V;, V;, V) are the key! If the tuple can be found, most
parameters can be solved out; if the tuple contains continuous node in some
topological order, all parameters can be solved out.
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Markovian IC Model with a Global Effect

@ If Vj, Vj, Vi can be adjacently continuous in some topological order, i.e.
j=1i+1,k= i+ 2 without loss of generality, all the parameters are
identifiable. For example, V5, V5. Vs in the figure. (idea: these three nodes
can help us to speculate the state of global effect Up.)

Ua
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Unidentifiability of the Semi-Markovian IC Model

Unidentifiability of the Semi-Markovian IC Model

Suppose in a general graph G, we can find the following structure. There are
three observable nodes Vi, V4, Vi such that (V4, V) € E, (Vs, V3) € E and
unobservable Uy, Us with (Uy, Vi), (Uy, Vo), (Ua, Vo), (Us, V3) € E. Suppose
each of Uy, Us only has two edges associated to it, the three nodes Vi, V5, V5 can
be written adjacently in a topological order of nodes in UU V. Then we can
deduce that the graph G is not parameter identifiable.

T :
R 1) "
d Y ’ ~

7 A
’ N ’ N
2 N 23

z. 7
20 Q22

Figure: An example of such structure.
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Unidentifiability of the Semi-Markovian IC Model

@ The main idea is that construct two set of different parameters but they
induce two same distribution on observable nodes.

_ 10r— 1 __ 6ro— 1 _ 1
@ n = 12,2_107 qi,1 = ar0 ql 2 — 8ry— 8’ CI2 1= 3-2ry’ q2,2 = iry and other

variables are fixed.

@ This surprising construction is found by the method of undetermined
coefficients.

So a large proportion of the semi-Markovian IC model is not fully
identifiable!
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|dentifiability of the Semi-Markovian IC Model

@ As we mentioned, the identifiability of semi-Markovian graphs is fully
investigated in the context of causal graphs.

@ What about the identifiability of the semi-Markovian IC model? Let us
consider the simplest case - the chain.

Ui(r1) Us(r2) Us(r3) Uy_o(rn-2)  Un_1(rn-1)
2 a2 2 1S E.S

/7 N\ /7 N\ /7 N\ /7 N\ /7 N\
4 J12 s 22 . 3.2 qn-2.17 \ 7 \In-12
, N N \ , 22y ,Qn-11 N

L O Vip 72 Vi Pl

n

@ However, according to our previous theorem, this contains [{] of its required
structure.

@ So we prove that with n specific parameters known in advance, we can solve
out all the other parameters.
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|dentifiability of the Semi-Markovian IC Model

Identifiability of Semi-Markovian IC Chain

Suppose that we have a semi-Markovian IC chain model with the graph

G = (U, V, E) and the IC parameters p = (pi)ic[n—1]» G1 = (9i,1)ie[n—1],

Gy = (Gi2)icin—1) and r= (r;)ic(n—1), and suppose that all parameters are in the
range (0, 1). If the values of parameter p; is known, g, or ris known, then the
remaining parameters are efficiently identifiable.
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Orange parameters are known in advance, then other parameters are identifiable.

22/27



|dentifiability of the Semi-Markovian IC Model

@ Proof idea: using mathematical induction, assume py, p2, - - - , pr—o,
r,ra,---,rn-2,4q1,1,4921, - ,qe—2,1 and d1,2,q92,2," " 5 qr—2.2, t—1qt—1,1
are already known.

@ We prove that q¢—1.1, ft—1, Pe—1, Gt—1,2 and r:qe1 can be computed using
distributions of observed variables.

Gilr,) Ualra) Uy olrna) Usalra-1)
=] [+] Q A ‘8
. N PEEAN \
22 2 n-2,10 N\ ’ Wn-1.2
S s 23y S 0n-11 N
L 4 - L ‘—&. .............. -
Vi I Vs D2 v, P3 Vi Vs Pn—2 V., Pt v,

@ Solve the group of equations deduced by the parameter expression of
P(Vi=0,---,Vi3=0,Ve_2o=1, V1 =1,V, =0),
P(V1 =0,--- ,Vt—S =0, Vio =0, Vier = 1,Vt:0).
P(Vi =0,---,Vi_3=0,V,_1 =0, V; =0). We have proved that other
equations deduced by the distribution of first ¢t nodes are all equivalent to
these three.

@ Actually, that is enough (but lots of technical issues not covered here).
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Conclusions

Our Contributions:

@ Proposed a method to convert the IC model into a Bayesian causal
graph.

o Studied the problem of identifiability of IC models in detail, and give
rich conditions for several types of common models to be identifiable
as well as unidentifiable.

@ Incorporation of observed confounding factors and causal inference
techniques.
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@ Seed selection and influence maximization correspond to the
intervention (or do effect) in causal inference.

@ How to compute such intervention effect under the network with
unobserved confounders and how to do influence maximization.

o Identifiability of the intervention effect, or whether given some
intervention effect one can identify more of such effects.

o ldentifiability in the general cyclic IC models -
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Thank you for your attention!
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