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How to Model Diffusion in a Social Network?

Traditionally, we use the Independent Cascade model (IC model).
If it is a direct acyclic graph, it is exactly a Bayesian causal graph!
After the propagation process, denote the activating status of node Vi
by vi.
Suppose, Pa(Vi) = {Vi1 ,Vi2 , · · · ,Vik}, we have
P(Vi = 1|Vi1 = vi1 , · · · ,Vik = vik) = 1−

∏k
j=1(1− pVij ,Vi · vij).
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What is do effect (for modeling intervention)?
Consider an IC model with three nodes, Salesman (Carol), Alice and
Bob.
Carol sold both Alice and Bob on the new operating system, Windows
11.
If Alice bought it, she would recommend Bob to buy it.
Node activation means purchase, non-activation means no purchase,
and the activation probability is shown in the figure.

P(Bob = 1) = 1− 0.8(1− 0.2× 0.3)(1− 0.5) = 0.53.
P(Bob = 1|do(Alice = 1)) = 1− 0.8(1− 0.3)(1− 0.5) = 0.65.
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What is do effect (for modeling intervention)?

P(Bob = 1) = 1− 0.8(1− 0.2× 0.3)(1− 0.5) = 0.53.
P(Bob = 1|do(Alice = 1)) = 1− 0.8(1− 0.3)(1− 0.5) = 0.65.

do(Alice = 1) is an intervention that forcing Alice to use Windows 11,
i.e. giving a free sample to her, which is different from
P(Bob = 1|Alice = 1).
Actually, P(Bob = 1|Alice = 1) = P(Bob = 1,Alice = 1)/P(Alice =
1) = 0.16(1− 0.5× 0.3)/0.16 = 0.85.
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Seed Node Selection ⇐⇒ Intervention

Usually, we will choose a seed node set (Bob, Frank in our example).
In-edge of Bob and Frank will be useless, Bob and Frank will be
activated no matter how the propagation performs.
Equivalent to the definition of do(Bob = 1,Frank = 1).

6 / 27



Bayesian Causal Graph

We can use Bayesian causal graph to model a social network!
The propagating rule is equivalent to the Bayesian propagating rule if
we merely observe the propagating results.
P(V1 = v1, · · · ,Vn = vn) =

∏n
i=1 P(Vi = vi|Pa(Vi) = pa(vi)).

To be more specific, what we have is a form like this:

Alice, Bob

Probability Carol
Activated Not Activated

A, A 0.1 0.2
A, N 0.1 0.05
N, A 0.3 0.15
N, N 0.05 0.05
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How About IC Model that is not a DAG?

The state of Vi in round t is Vi,t and that Vi,t has three values, 0, 1
and 2, for three states.
State 0 means that the node is not activated.
State 1 means that the node was activated at the last time point.
State 2 means that the node is activated and has already tried to
activate its child nodes.

Figure: An example of transformation from IC model to Bayesian causal graph.
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Identifiability Problem In Causal Graphs

Now we have shown that how to transform an IC model to a causal
graph.
Identifiability generally says that if we can get the propagation result
for infinitely times, we can completely restore the parameters in this
graph.
In Bayesian causal graph, identifiability means that if
P(V1 = v1, · · · ,Vn = vn)’s are known, we can solve P(Y|do(X = x))
for node sets X,Y ⊂ V.
In IC model, parameter identifiability means that if
P(V1 = v1, · · · ,Vn = vn)’s are known (2n terms), we can solve all the
activating probabilities pVi,Vj for (Vi,Vj) ∈ E.
With all the parameters, do effects can be naturally computed, so
parameter identifiability is strictly stronger than identifiability!
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With Hidden Variables

If all the nodes are observable, all the do effects will be identifiable.
If some variables are not observable? We still consider the Windows
11 selling example.
We do not know Carol so we cannot know whether Carol = 1. Also,
”Carol” can be a factor, such as common interests that cannot be
revealed.
So Carol is a hidden variable, the outcoming edges are denoted using
dashed vectors.

If we can only observe P(Alice,Bob), can be get P(Bob|do(Alice))?
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Identifiability Problem In Causal Graphs

Fully solved for Semi-Markovian graphs!
Pearl’s do calculus algorithm is complete for Semi-Markovian Models1.
That is to say, after iterations of three rules in do calculus, if we can
identify all the do effects, the causal graph is identifiable.

Figure: an example of semi-Markovian model, each hidden variable has at
most two children and they should be observable

1Huang, Y., & Valtorta, M. (2012). Pearl’s calculus of intervention is complete.
arXiv preprint arXiv:1206.6831.
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Identifiability Problem In IC Model

Suppose G = (U,V,E) where U,V are the sets of hidden and
observable variables, respectively.
If we have P(V1,V2, · · · ,Vn), can we solve all the parameters under
any instance (taking any values for the parameters) of this graph G?
For example, there are three hidden advertisements in our previous IC
model.
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Three Studied Typical IC Models

Figure: Markovian IC Model. Figure: Markovian IC Model
with a Global Effect.

Figure: Semi-Markovian IC Model.
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Markovian IC Models

Identifiability of the Markovian IC Model
For an arbitrary Markovian IC model G = (U,V,E) with parameters
q = (qi)i∈[n] and p = (pi,j)(Vi,Vj)∈E, all the qi parameters are efficiently
identifiable, and for every i ∈ [n], if qi ̸= 1, then all pj,i parameters for
(Vj,Vi) ∈ E are efficiently identifiable.

So almost all the Markovian IC models are identifiable!
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IC Model with a Global Effect

Identifiability of the IC Model with a Global Hidden Variable
For an arbitrary IC model with a global hidden variable G = (U,V,E) with
parameters q = (qi)i∈[n], r and p = (pi,j)(Vi,Vj)∈E such that qi ̸= 1, pi,j ̸= 1 and
r ̸= 1 for ∀i, j ∈ [n], all the parameters in p, r and q are identifiable.

So almost all the IC models with a global effect are identifiable!
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Markovian IC Model with a Global Effect

Identifiability of Markovian IC Model with a Global Hidden Variable
For an arbitrary Markovian IC Model with a Global Hidden Variable G = (U,V,E)
with parameters r0, q0 = (q0,i)i∈[n], q = (qi)i∈[n] and p = (pi,j)(Vi,Vj)∈E, we
suppose that all the parameters are not 1. If ∃i, j, k ∈ [n], i < j < k such that each
pair in Vi,Vj,Vk are disconnected and q0,i, q0,j, q0,k ̸= 0, then the parameters
q0,t, qt and pt,l, l > t > k are identifiable. Moreover, if Vi,Vj,Vk can be adjacently
continuous in some topological order, i.e. j = i + 1, k = i + 2 without loss of
generality, all the parameters are identifiable.

Comment: unconnected Vi,Vj,Vk are the key! If the tuple can be found, most
parameters can be solved out; if the tuple contains continuous node in some
topological order, all parameters can be solved out.
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Markovian IC Model with a Global Effect
If Vi,Vj,Vk can be adjacently continuous in some topological order, i.e.
j = i + 1, k = i + 2 without loss of generality, all the parameters are
identifiable. For example, V5,V6,V8 in the figure. (idea: these three nodes
can help us to speculate the state of global effect U0.)
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Unidentifiability of the Semi-Markovian IC Model

Unidentifiability of the Semi-Markovian IC Model
Suppose in a general graph G, we can find the following structure. There are
three observable nodes V1,V2,V3 such that (V1,V2) ∈ E, (V2,V3) ∈ E and
unobservable U1,U2 with (U1,V1), (U1,V2), (U2,V2), (U2,V3) ∈ E. Suppose
each of U1,U2 only has two edges associated to it, the three nodes V1,V2,V3 can
be written adjacently in a topological order of nodes in U ∪ V. Then we can
deduce that the graph G is not parameter identifiable.

Figure: An example of such structure.
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Unidentifiability of the Semi-Markovian IC Model

The main idea is that construct two set of different parameters but they
induce two same distribution on observable nodes.
r1 = 10r2−7

12r2−10 , q1,1 = 1
4r1 , q1,2 = 6r2−5

8r2−8 , q2,1 = 1
3−2r2 , q2,2 = 1

4r2 and other
variables are fixed.
This surprising construction is found by the method of undetermined
coefficients.

So a large proportion of the semi-Markovian IC model is not fully
identifiable!
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Identifiability of the Semi-Markovian IC Model

As we mentioned, the identifiability of semi-Markovian graphs is fully
investigated in the context of causal graphs.
What about the identifiability of the semi-Markovian IC model? Let us
consider the simplest case - the chain.

However, according to our previous theorem, this contains [ n
2 ] of its required

structure.
So we prove that with n specific parameters known in advance, we can solve
out all the other parameters.
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Identifiability of the Semi-Markovian IC Model

Identifiability of Semi-Markovian IC Chain
Suppose that we have a semi-Markovian IC chain model with the graph
G = (U,V,E) and the IC parameters p = (pi)i∈[n−1], q1 = (qi,1)i∈[n−1],
q2 = (qi,2)i∈[n−1] and r = (ri)i∈[n−1], and suppose that all parameters are in the
range (0, 1). If the values of parameter p1 is known, q2 or r is known, then the
remaining parameters are efficiently identifiable.

Orange parameters are known in advance, then other parameters are identifiable.
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Identifiability of the Semi-Markovian IC Model

Proof idea: using mathematical induction, assume p1, p2, · · · , pt−2,
r1, r2, · · · , rt−2, q1,1, q2,1, · · · , qt−2,1 and q1,2, q2,2, · · · , qt−2,2, rt−1qt−1,1

are already known.
We prove that qt−1,1, rt−1, pt−1, qt−1,2 and rtqt,1 can be computed using
distributions of observed variables.

Solve the group of equations deduced by the parameter expression of
P(V1 = 0, · · · ,Vt−3 = 0,Vt−2 = 1,Vt−1 = 1,Vt = 0),
P(V1 = 0, · · · ,Vt−3 = 0,Vt−2 = 0,Vt−1 = 1,Vt = 0),
P(V1 = 0, · · · ,Vt−3 = 0,Vt−1 = 0,Vt = 0). We have proved that other
equations deduced by the distribution of first t nodes are all equivalent to
these three.
Actually, that is enough (but lots of technical issues not covered here).
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Conclusions

Our Contributions:
Proposed a method to convert the IC model into a Bayesian causal
graph.
Studied the problem of identifiability of IC models in detail, and give
rich conditions for several types of common models to be identifiable
as well as unidentifiable.
Incorporation of observed confounding factors and causal inference
techniques.
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Future works

Seed selection and influence maximization correspond to the
intervention (or do effect) in causal inference.
How to compute such intervention effect under the network with
unobserved confounders and how to do influence maximization.
Identifiability of the intervention effect, or whether given some
intervention effect one can identify more of such effects.
Identifiability in the general cyclic IC models·
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Q&A

Thank you for your attention!

27 / 27


	Backgrounds and Motivations
	Technical Results
	Conclusions and Future works

