Multi-Agent Owner-Assisted Scoring Mechanisms

Shi Feng¹ (co-advised by Prof. Yuhao Wang¹ and Prof. Weijie Su²)
2022.12.18

I. INSTITUTE OF INTERDISCIPLINARY INFORMATION SCIENCES (IIIS), TSINGHUA UNIVERSITY

2. WHARTON STATISTICS AND DATA SCIENCE DEPARTMENT, UNIVERSITY OF PENNSYLVANIA

- Backgrounds
- A Mechanism for Two Agents
- An Extension to Multiple Agents
- Simulations

Why we need owner-assisted scoring? Taxing requires information from multiple owners. Single-agent HELL (1925-1992) (artist/collector) **Carbon Taxes in Europe** Carbon Tax Rates per Metric Ton of CO2e, as of April 1, 2022 scoring. I **Price Realized** \$6,283,750 (Set Currency) **Estimate** \$3,000,000 - \$4,000,000 Sale Information SALE 2785 -AT* €30.00 #11 POST-WAR & CONTEMPORARY EVENING SALE 15 May 2013 New York, Rockefeller Plaza €39.15 Carbon Tax Rates per

Soliciting information from owners to improve value evaluation!

- Background
- A Mechanism for Two Agents
- An Extension to Multiple Agents
- Simulations

Mechanism \mathcal{M}_2 for Two Agents

Our Mechanism Design

$ig(\widehat{Y}_1,\widehat{Y}_2ig)$ Table	$Y_1 \oplus_1 Y_2$	$\neg (Y_1 \oplus_1 Y_2)$
$\oplus_1 \neq \oplus_2$	(Y_1,Y_2)	$\left(\frac{Y_1+Y_2}{2},\frac{Y_1+Y_2}{2}\right)$
$\oplus_1 = \oplus_2$	$\left(Y_1 - \frac{Y_2 - Y_1}{2} \mathbb{I}[Y_1 < Y_2], Y_2 - \frac{Y_1 - Y_2}{2} \mathbb{I}[Y_1 > Y_2]\right)$	$\left(Y_1 - \frac{Y_2 - Y_1}{2} \mathbb{I}[Y_1 < Y_2], Y_2 - \frac{Y_1 - Y_2}{2} \mathbb{I}[Y_1 > Y_2]\right)$

Satisfying two design goals for \hat{Y}_1 , \hat{Y}_2 :

- incentive-compatibility (truthful \bigoplus_1 and \bigoplus_2),
- estimation improvement $(|\widehat{Y} R|_2 \le |Y R|_2)$ if agents are both truthful).

- Background
- A Mechanism for Two Agents
- An Extension to Multiple Agents
- Simulations

Mechanism \mathcal{M}_n for Multiple (n) Agents

Mechanism \mathcal{M}_n :

- Step I: get noisy/biased estimation of Y for true item values R.
- Step 2: for each pair $P_k = (A_i, A_j)$ of agents in pair set P, perform mechanism \mathcal{M}_2 and get estimations $M_2(A_i, A_j)$ and $M_2(A_j, A_i)$ for those two agents, respectively.
- Step 3: return estimated value $\widehat{Y}_i = \frac{\sum_{j=1,j\neq i}^n M_2(A_i,A_j)}{n-1}$ where $M_2(A_i,A_j)$ is set as $\frac{Y_i}{n-1}$ if (A_i,A_j) is not in P.

According to linearity of expectation, one could verify that \mathcal{M}_n still satisfies **incentive-compatible** and **estimation improvement**.

Several Extensions

• We use the identity utility function (or linear utility function) previously. I also prove that with an assumption on Y, our mechanisms \mathcal{M}_2 and \mathcal{M}_n still guarantee **incentive-compatible** when agents have **bilipschitz utility functions**.

$$\kappa_1|x-y| \le |U(x) - U(y)| \le \kappa_2|x-y|$$

By adding a constant ϵ smaller than 0.5, new mechanisms \mathcal{M}'_2 and \mathcal{M}'_n support strictly **incentive-compatible** for multi-agent setting while each agent has **multiple items**.

 \widehat{Y} Design for \mathcal{M}_2' and \mathcal{M}_n'

(\hat{Y}_1, \hat{Y}_2) Table	$Y_1 \oplus_1 Y_2$	$\neg (Y_1 \bigoplus_1 Y_2)$
$\bigoplus_1 \neq \bigoplus_2$	(Y_1,Y_2)	$\left(\frac{Y_1 + Y_2}{2} + \epsilon \frac{Y_1 - Y_2}{2} \mathbb{I}[\bigoplus_1 = >] + \epsilon \frac{Y_2 - Y_1}{2} \mathbb{I}[\bigoplus_1 = <], \frac{Y_1 + Y_2}{2} + \epsilon \frac{Y_2 - Y_1}{2} \mathbb{I}[\bigoplus_2 = >] + \epsilon \frac{Y_1 - Y_2}{2} \mathbb{I}[\bigoplus_2 = <]\right)$
$\bigoplus_1 = \bigoplus_2$	$\left(Y_1 - (1+\epsilon)\frac{Y_2 - Y_1}{2}\mathbb{I}[Y_1 < Y_2], Y_2 - (1+\epsilon)\frac{Y_1 - Y_2}{2}\mathbb{I}[Y_1 > Y_2]\right)$	$\left(Y_1 - (1+\epsilon)\frac{Y_2 - Y_1}{2}\mathbb{I}[Y_1 < Y_2], Y_2 - (1+\epsilon)\frac{Y_1 - Y_2}{2}\mathbb{I}[Y_1 > Y_2]\right)$

- Background
- A Mechanism for Two Agents
- An Extension to Multiple Agents
- Simulations

Simulations

We run \mathcal{M}_n for all pairs of agents on random item values R and standard distribution noises ϵ such that $Y = R + \epsilon \cdot \widehat{Y}$ generated by \mathcal{M}_n achieves 8%-20% improvement over Y.

Thank you for your attention!